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Abstract In this work we study the higher excited states of Helium Atom. The
purpose is to evaluate Coulomb and exchange integral via spherical harmonics series.
The Coulomb and exchange integrals energy shift is evaluated up to sixth order. This
is the energy when the atom is perturbed by Coulomb potential between electrons.
The energy levels obtained from both integrals are in agreement with the experimen-
tal data. For highly-excited states, the calculated energy approaches −54.416 eV, in
agreement with the graphical results from the book by Powell and Crasemann [1].

Keywords Coulomb integral · Exchange integrals · Perturbation-theory · Addition
theorem of spherical harmonics

1 Introduction

Modern physical theory rests upon the basic fact that matter is composed of rela-
tively few types of elementary particles (electrons, positrons, protons, neutrons, etc.).
Each type is characterized by a few properties, such as mass, charge, and intrinsic
angular momentum or spin, which enter into the equations of the theory as invariable
parameters. All electrons, for example, are intrinsically identical in every aspect.

Helium atom is a typical three-body system with strong correlated motion of two
electrons influence by Coulomb potential. The numerical calculation of the energy
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levels and the wave functions of a helium atom is one of the most interesting and
fundamental problems in the atomic physics. The perturbation method can be used to
predict with a very high precision for energy values [2–4]. Scherr and Knight used
100-term trial functions to get extremely accurate approximations to the wave function
correction up to sixth order and thus to the energy corrections up to thirteenth order
[5,6]. The perturbation-theory series expansion for the He-atom energy can be proved
to converge [7,8]. Baker et al. [9] calculated the energy corrections up to order of 401.
Drake and Yan used linear variational functions containing r12 (Sect. 2) to calculate
the ground-state energy and many excited-state energy of helium that are thought to
be accurate to 1 part in 1014 or better [10,11]. These workers similarly calculated (Li)
variational energy for the ground state and two excited states with 1 part in 109 accu-
racy or better [12–15] In 2002, Duan et al. [16–19] showed a new method to evaluate
the energy levels of helium atom for a quantum three-body system, where the motion
of the center of mass and the global rotation of the system are completely separated
from the internal motion.

The plan of this paper is as follows. The helium atom has three-body system. We
shall consider the nucleus to be at rest and place the origin of the coordinate system at
the nucleus. We will explain the method in Sect. 2 and calculate the Coulomb integral
and exchange integral. In Sect. 3, using the addition theorem of spherical harmonic
[2] into the Coulomb integral and exchange integral to calculate total energy of each
state. The discussion and conclusion are given in Sect. 4.

2 Basic theory

The helium atom has two electrons and a nucleus of charge +2e. We shall consider
the nucleus to be at rest and place the origin of the coordinate system at the nucleus.
The coordinate of two electrons 1 and 2 are (x1, y1, z1) and (x2, y2, z2); see Fig.1. If
we take the nuclear charge to be +Ze instead of +2e, we can treat heliumlike ions
such as H−, Li+, Be2+ The basic Hamiltonian is given by

Ĥ = p̂2
1

2m
+ p̂2

2

2m
− Ze2

r1
− Ze2

r2
+ e2

|r1 − r2| , (1)

Ĥ0 = p̂2
1

2m
+ p̂2

2

2m
− Ze2

r1
− Ze2

r2
, Ĥ ′ = e2

|r1 − r2| , (2)

Fig. 1 Interparticle distances in
the helium atom

123



2088 J Math Chem (2012) 50:2086–2102

where m is the mass of the electron, r1 and r2 are the distances of electrons 1 and 2
from the nucleus, and r12 is the distance from electrons 1 to 2. The first two terms
are the operators for the electrons kinetic energy. The third and fourth terms are the
potential energy of attraction between the electrons and the nucleus. The final term is
the potential energy of interelectronic repulsion. Note that the potential energy of a
system of interacting particles cannot be written as the sum of potential energy of the
individual particles; the potential energy is a property of the system as a whole.

The Schrödinger equation involves six independent variables, three coordinates for
each electron. In spherical coordinates, we obtain ψ = ψ(r1, θ1, φ1, r2, θ2, φ2).

The operator p̂2
1 � −h̄2∇2

1 is given by the Laplacian spherical coordinates with
r1, θ1, φ1 replacing r, θ, φ. The variable r12 is r12 = [(x1 − x2)

2 + (y1 − y2)
2 + (z1 −

z2)
2]1/2, and by using the relations between Cartesian and spherical coordinates, we

can express r12 in terms of r1, θ1, φ1, r2, θ2, φ2. Suppose the e2/|r1 − r2| ≡ e2/r12
were absent.

Because of the e2/r12 term, the Schrödinger equation for helium cannot be separated
in any coordinate system, and we must use approximation methods. The perturbation
method separates the Hamiltonian Eq. (1) into two parts, Ĥ0 and Ĥ ′, where Ĥ0 is the
Hamiltonian of an exactly solvable problem and Ĥ ′ is the electron-electron interac-
tion. Then, with the identity question ignored, the wave function would be just the
product of two hydrogen atom wave functions with Z = 1 change into Z = 2 The
total spin is constant, so the state is either singlet or triplet. The spatial part of the wave
function for the important case where one of the electrons is in the ground state and
the other in a higher excited states characterized by (nlm) is

ψ(r1, r2) = 1√
2
[ψ100(r1)ψnlm(r2)± ψ100(r2)ψnlm(r1)]. (3)

We have, from the expectation value

〈 f 〉 =
∫
ψ∗(x, t) f̂ψ(x, t)dx (4)

The next step is to evaluate the first-order perturbation correction to the energy.


E (1) = 〈H ′〉 =
〈 e2

r12

〉
(5)

Let us define expectation values of Ĥ ′ as

〈 e2

r12

〉
=

∫

r2

∫

r1

ψ∗(r1, r2)
e2

|r1 − r2|ψ(r1, r2)d
3r1d3r2. (6)

123



J Math Chem (2012) 50:2086–2102 2089

By substituting Eq. (3) into (5), we have

〈 e2

r12

〉
=

∫

r2

∫

r1

(ψ∗
100(r1)ψ

∗
nlm(r2)± ψ∗

100(r2)ψ
∗
nlm(r1))

e2

2|r1 − r2|

(ψ100(r1)ψnlm(r2)± ψ100(r2)ψnlm(r1)d
3r1d3r2)

= e2

2

∫

r2

∫

r1

[ψ∗
100(r1)ψ

∗
nlm(r2)ψ100(r1)ψnlm(r2)

±ψ∗
100(r1)ψ

∗
nlm(r2)ψ100(r2)ψnlm(r1)

±ψ∗
100(r2)ψ

∗
nlm(r1)ψ100(r1)ψnlm(r2)

+ψ∗
100(r2)ψ

∗
nlm(r1)ψ100(r2)ψnlm(r1)]d3r1d3r2

|r1 − r2| (7)

〈 e2

r12

〉
= e2

2

∫

r2

∫

r1

[|ψ100(r1)|2|ψnlm(r2)|2 ± ψ∗
100(r1)ψ

∗
nlm(r2)ψ100(r2)ψnlm(r1)

±ψ∗
100(r2)ψ

∗
nlm(r1)ψ100(r1)ψnlm(r2)

+|ψ100(r2)|2|ψnlm(r1)|2
]d3r1d3r2

|r1 − r2| (8)

Consider the symmetry between r1 and r2, then Eq. (8) can be rewritten as

〈 e2

r12

〉
=

∫

r2

∫

r1

|ψ100(r1)|2 · e2

|r1 − r2| · |ψnlm(r2)|2d3r1d3r2 ± Re

∫

r2

∫

r1

ψ∗
100(r2)ψ

∗
nlm(r1) · e2

|r1 − r2| · ψ100(r1)ψnlm(r2)d
3r1d3r2. (9)

The first term on the right-hand sides of Eq. (9) are Coulomb integral [2–4] written
as

J =
∫

r2

∫

r1

|ψ100(r1)|2 · e2

|r1 − r2| · |ψnlm(r2)|2d3r1d3r2. (10)

The second term on the right-hand sides of Eq. (9) are Exchange integral [2–4] written
as

K =
∫

r2

∫

r1

ψ∗
100(r2)ψ

∗
nlm(r1) · e2

|r1 − r2| · ψ100(r1)ψnlm(r2)d
3r1d3r2. (11)
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We consider just (1s)(nl). We write the energy of this state as

E = E100 + Enlm +ΔE . (12)

In first-order perturbation theory, ΔE is obtained by evaluating the expectation value
of e2/r12. We can write

〈 e2

r12

〉
= (J ± K ). (13)

By substituting Eq. (13) back into Eq. (12), we obtain total energy of helium atom

E = E100 + Enlm + J ± K . (14)

The lower energy level is, therefore,

Et = E100 + Enlm + (J − K ), (15)

and is triply degenerate(-) it is called a triplet [4]. The higher energy level,

Et = E100 + Enlm + (J + K ), (16)

is non-degenerate, and is therefore a singlet [4], as is the ground state (Table 1).
The physical interpretation for this is as follows: In the singlet (Eq. (16)) case the

spatial function is symmetric and the electrons have a tendency to come close to each
other. Therefore, the effect of the electrostatic repulsion is more serious; hence, a
higher energy results. In the triplet (Eq. (15)) case, the spatial function is antisymmet-
ric and the electrons tend to avoid each other. Helium in spin-singlet states is known as
parahelium, while helium in spin-triplet states is known as orthohelium. See Fig. 2.
for a schematic energy level diagram of the helium atom.

3 Numerical results of the Coulomb integral and exchange integral

The Coulomb integral and exchange integral for higher excited states of Helium Atom
is calculated by using Spherical Harmonics Series. We use mathematica program in
the calculation of energy.

3.1 Calculation of the Coulomb integral

The Coulomb integral can be written as

J =
∫

r2

∫

r1

|ψ100(r1)|2 · e2

|r1 − r2| · |ψnlm(r2)|2d3r1d3r2, (17)

123



J Math Chem (2012) 50:2086–2102 2091

Table 1 The total energy of the helium atom in higher excited state

Spectral term Calculated Experimental [19] % Difference

1s2s 1S −55.4050425240055 −58.3624572424563 5.33781

1s3s 1S −54.7346592339410 −56.0579202431514 2.41759

1s4s 1S −54.5535138464768 −55.2491296415375 1.27511

1s5s 1S −54.4870842912034

1s6s 1S −54.4573420862175

1s7s 1S −54.4421110706479

1s8s 1S −54.4335251863824

1s2s 3S −57.7936735237756 −59.1581011131610 2.36086

1s3s 3S −55.3623828666753 −56.2604609645120 1.62218

1s4s 3S −54.8081410245632 −55.3634244356412 1.01314

1s5s 3S −54.6151609247315

1s6s 3S −54.5307576125461

1s7s 3S −54.4880803922891

1s8s 3S −54.4642075785788

1s2p 1P −53.8789727573545 −57.7604441467894 7.20406

1s3p 1P −54.2937581108941 −55.8915139004001 2.94287

1s4p 1P −54.3691766078874 −55.1922689600000 1.51396

1s5p 1P −54.3930976624178

1s6p 1P −54.4030752736124

1s7p 1P −54.4079840937083

1s8p 1P −54.4106831400724

1s2p 3P −55.7367968297516 −58.0143534226402 4.08627

1s3p 3P −54.7869695366753 −55.9717377584023 2.16250

1s4p 3P −54.5698827364966 −55.2361266080000 1.22090

1s5p 3P −54.4941966213751

1s6p 3P −54.4610710235423

1s7p 3P −54.4443148339112

1s8p 3P −54.4349393578153

1s3d 1D −54.4073461968324 −55.9043256000000 2.75143

1s4d 1D −54.4115360143487 −55.1854601120000 1.42235

1s5d 1D −54.4135541023456

1s6d 1D −54.4145386574369

1s7d 1D −54.4150632320963

1s8d 1D −54.4153655047746

1s3d 3D −54.4342486382376 −55.9047828800000 2.70149

1s4d 3D −54.4258864312197 −55.1879867210000 1.40025

1s5d 3D −54.4215435764179

1s6d 3D −54.4193543215431
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Table 1 continued

Spectral term Calculated Experimental [19] % Difference

1s7d 3D −54.4181667827563

1s8d 3D −54.4174749665374

1s4f 1F −54.4189244597897

1s5f 1F −54.4159400013254

1s6f 1F −54.4159582013456

1s7f 1F −54.4159709138162

1s8f 1F −54.4159792752935

1s4f 3F −54.4191486578456

1s5f 3F −54.4161203653457

1s6f 3F −54.4160847564789

1s7f 3F −54.4160593395956

1s8f 3F −54.4164240923064

1s5g 1G −54.4159995887897

1s6g 1G −54.4159996143478

1s7g 1G −54.4159996261728

1s8g 1G −54.4159997043236

1s5g 3G −54.4160007956426

1s6g 3G −54.4160008567534

1s7g 3G −54.4160009189475

1s8g 3G −54.4160009570744

1s6h 1H −54.4159999984201

1s7h 1H −54.4159999988620

1s8h 1H −54.4159999997917

1s6h 3H −54.4160000029215

1s7h 3H −54.4160000034795

1s8h 3H −54.4160000039854

1s7i 1I −54.4159999999956

1s8i 1I −54.4159999999969

1s7i 3I −54.4160000000080

1s8i 3I −54.4160000000130

and using the addition theorem of spherical harmonics [2]:

1

|r1 − r2| =
∞∑

l ′=0

l ′∑
m′=−l ′

( 4π

2l ′ + 1

)
· rl ′

<

rl ′+1
>

Yl ′m′(Ω1)Y
∗
l ′m′(Ω2), (18)

where r>(r<) is the larger (smaller) of r1 and r2 respectively. Thus a different expan-
sion is presented for each region see Fig. 3. r> is the vector indicating the position of
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Fig. 2 Schematic energy level
diagram for higher excited state
configurations of helium atom

Fig. 3 The graph shows the
relation between individual
electrons and atomic nuclei

the electron far away from the nucleus. r< is the vector indicating the position of the
electron near the nucleus.

Substituting Eq. (18) back into Eq. (17) yields

J = e2
∞∑

l ′=0

l ′∑
m′=−l ′

( 4π

2l ′ + 1

)∫

Ω2

∫

Ω1

∫

r2

∫

r1

dr1dr2dΩ1dΩ2r2
1 R2

10(r1)Y
∗
00(Ω1)

Y00(Ω1)
( rl ′

<

rl ′+1
>

)
Yl ′m′(Ω1)Y

∗
l ′m′(Ω2)r

2
2 R2

nl(r2)Y
∗
lm(Ω2)Ylm(Ω2) (19)

Substituting Y00(Ω1)Y ∗
00(Ω1) = (4π)−1/2 into Eq. (19) gives

J = e2
∞∑

l ′=0

l ′∑
m′=−l ′

( 1

2l ′ + 1

) ∫

Ω2

∫

Ω1

dΩ1dΩ2Yl ′m′(Ω1)Y
∗
l ′m′(Ω2)Y

∗
lm(Ω2)Ylm(Ω2)

∫

r2

∫

r1

dr1dr2r2
1 R2

10(r1)r
2
2 R2

nl(r2)
( rl ′

<

rl ′+1
>

)
(20)

We define the new variable Ci so that

Cl ′ =
∫

r2

∫

r1

dr1dr2r2
1 R2

10(r1)r
2
2 R2

nl(r2)
( rl ′

<

rl ′+1
>

)
. (21)
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Fig. 4 Showing the area of
double integrals

Substituting the definition [2]

( rl ′
<

rl ′+1
>

)
=

⎧⎪⎨
⎪⎩

rl′
1

rl′+1
2

for r1 < r2

rl′
2

rl′+1
1

for r1 > r2

into Eq. (21), we have

Cl ′ =
∞∫

0

r2∫

0

r2
2 · rl ′+2

1

rl ′+1
2

R2
nl(r2)R

2
10(r1)dr1dr2+

∞∫

0

∞∫

r2

r2
1 · rl ′+2

2

rl ′+1
1

R2
nl(r2)R

2
10(r1)dr1dr2 (22)

The first term on the right-hand sides of Eq. (22) are Cl ′1 written as

Cl ′1 =
∞∫

0

r2∫

0

r2
2 · rl ′+2

1

rl ′+1
2

R2
nl(r2)R

2
10(r1)dr1dr2 (23)

The second term on the right-hand sides of Eq. (22) are Cl ′2 written as

Cl ′2 =
∞∫

0

∞∫

r2

r2
1 · rl ′+2

2

rl ′+1
1

R2
nl(r2)R

2
10(r1)dr1dr2 (24)

Let us consider Fig. 4. The area integrals of the region RI , RI I are

∫

RI

f (x, y) dxdy =
a∫

0

y∫

0

f (x, y) dxdy, (25)

∫

RI I

f (x, y) dxdy =
a∫

0

a∫

x

f (x, y) dydx . (26)
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when

RI : 0 ≤ x ≤ y, 0 ≤ y ≤ a

RI I : 0 ≤ x ≤ a, x ≤ y ≤ a.

Following the Double Integral method in Ref. [20], Eq. (25) can change the order of
the integrated hazard. There is value in the Eq. (26), we have

a∫

0

y∫

0

f (x, y) dxdy =
a∫

0

a∫

x

f (x, y) dydx . (27)

Equation (23) is hence transformed to

Cl ′1 =
∞∫

0

r2∫

0

r2
2 · rl ′+2

1

rl ′+1
2

R2
nl(r2)R

2
10(r1)dr1dr2

=
∞∫

0

∞∫

r1

r2
2 · rl ′+2

1

rl ′+1
2

R2
nl(r2)R

2
10(r1)dr1dr2 (28)

Equation (23) is compared with that of the Eq. (28). It is found that the value of r1
and r2 relation is r1 ↔ r2. Equation (23) has to be transformed into Eq. (28) in order
to get the Coulomb integral done. Inserting Eq. (22) into (20) the Coulomb integral is
written as

J = e2
∞∑

l ′=0

l ′∑
m′=−l ′

( Cl ′

2l ′ + 1

) ∫

Ω2

∫

Ω1

Yl ′m′(Ω1)Y
∗
l ′m′(Ω2)Y

∗
lm(Ω2)Ylm(Ω2) (29)

We consider the first excited state(1s2p) of helium n = 2, l = 1, m = ±1, 0 into
Eq. (29), yields

J = e2
∞∑

l ′=0

l ′∑
m′=−l ′

( Cl ′

2l ′ + 1

) ∫

Ω2

∫

Ω1

Y ∗
l ′m′(Ω2)Y

∗
1m(Ω2)Y1m(Ω2)

⎧⎪⎨
⎪⎩

∫

Ω1

Y ∗
00(Ω1)

Y00(Ω1)
· Yl ′m′(Ω1)dΩ1

⎫⎪⎬
⎪⎭ dΩ2 (30)

Using properties of the orthonormality relations of spherical harmonics into Eq. (30),
we have

J = e2Cl ′ (31)
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By substituting Eq. (22) into (31), we have

J = e2

⎧⎨
⎩

∞∫

0

r2 R2
21(r2)

⎡
⎣

r2∫

0

r2
1 R2

10(r1)dr1

⎤
⎦ dr2

+
∞∫

0

r2
2 R2

21(r2)

⎡
⎣

∞∫

r2

r1 R2
10(r1)dr1

⎤
⎦ dr2

⎫⎬
⎭ (32)

Substituting Eq. (32) into Mathematica program, will the value of the Coulomb integral
so that

J = 59Ze2

243a0
= 13.22 eV. (33)

3.2 Calculation of the exchange integral

The exchange integral can be written as

K = e2
∫

r2

∫

r1

ψ∗
100(r2)ψ

∗
nlm(r1) · 1

|r1 − r2| · ψ100(r1)ψnlm(r2)d
3r1d3r2 (34)

Substituting the addition theorem of spherical harmonics series into Eq. (34), we
finally obtain the exchange integral as

K = e2
∞∑

l ′=0

l ′∑
m′=−l ′

( 4π

2l ′ + 1

) ∫

r2

∫

r1

d3r1d3r2ψ
∗
100(r2)ψ

∗
nlm(r1)

( rl ′
<

rl ′+1
>

)

Yl ′m′(Ω1)Y
∗
l ′m′(Ω2)ψ100(r1)ψ

∗
nlm(r2). (35)

We consider the first excited state(1s2p) of helium n = 2, l = 1, m = ±1, 0 into
Eq. (35), yields

K = e2
∞∑

l ′=0

l ′∑
m′=−l ′

( 4π

2l ′ + 1

) ∫

r2

∫

r1

d3r1d3r2ψ
∗
100(r2)ψ

∗
21m(r1)

( rl ′
<

rl ′+1
>

)

Yl ′m′(Ω1)Y
∗
l ′m′(Ω2)ψ100(r1)ψ

∗
21m(r2). (36)

We consider the wave function to be ψ2,1,−1(r) = R2,1(r)Y1,−1(Ω) and using prop-
erties of the orthonormality relations of spherical harmonics into Eq. (36), we get

K = e2

3

∫

r2

r2
2 R10(r2)R21(r2)

{ ∫

r1

r2
1 R10(r1)R21(r1)

( rl ′
<

rl ′+1
>

)
dr1

}
dr2. (37)
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Substituting the definition [2]

( rl ′
<

rl ′+1
>

)
=

⎧⎪⎨
⎪⎩

rl′
1

rl′+1
2

for r1 < r2

rl′
2

rl′+1
1

for r1 > r2

into Eq. (37), we have

K = e2

3

∞∫

0

r2∫

0

r2
2

r3
1

r2
2

R10(r2)R21(r2)R10(r1)R21(r1)dr1dr2

+e2

3

∞∫

0

∞∫

r2

r2
1

r3
2

r2
1

R10(r2)R21(r2)R10(r1)R21(r1)dr1dr2 (38)

The first term on the right-hand sides of Eq. (38) are K1a written as

K1a = e2

3

∞∫

0

r2∫

0

r2
2

r3
1

r2
2

R10(r2)R21(r2)R10(r1)R21(r1)dr1dr2. (39)

The second term on the right-hand sides of Eq. (38) are K2a written as

k2a = e2

3

∞∫

0

∞∫

r2

r2
1

r3
2

r2
1

R10(r2)R21(r2)R10(r1)R21(r1)dr1dr2. (40)

From Eq. (39) used change the order of the integrated, we obtain K1a rewritten as

K1a = e2

3

∞∫

0

∞∫

r1

r2
1

r3
2

r2
1

R10(r2)R21(r2)R10(r1)R21(r1)dr2dr1. (41)

It is easy to see that K1a = K2a . The exchange integral Eq. (38) can therefore be
rewritten as

K = 2e2

3

∞∫

0

r3
2 R10(r2)R21(r2)

⎧⎨
⎩

∞∫

r2

R10(r1)R21(r1)dr1

⎫⎬
⎭ dr2. (42)

Substituting m = 0, 1 into Eq. (35), we get the exchange integral like Eq. (42).
Substituting Eq. (42) into Mathematica program (see Sect. 3.3), will the value of the
exchange integral so that

K = 112Ze2

6561a0
= 0.94 eV. (43)
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3.3 The calculation of mathematica program

Calculation of the energy of the Coulomb integral and exchange integral( e2

a0
unit) Case

1. Evaluation of the Coulomb integral (1s3s)

J = e2

⎧⎨
⎩

∞∫

0

r2 R2
30(r2)

⎡
⎣

r2∫

0

r2
1 R2

10(r1)dr1

⎤
⎦ dr2

+
∞∫

0

r2
2 R2

30(r2)

⎡
⎣

∞∫

r2

r1 R2
10(r1)dr1

⎤
⎦ dr2

⎫⎬
⎭ , (44)

where l ′ = 0, l = 0, n = 3. The calculation is as follows.

I n := R10[r1_] := 2( z
a0 )

3
2 E− zr1

a0

I n := R30[r1_] := 2( z
3a0 )

3
2 (1 − 2zr1

3a0 + 2z2r12

27a0 )E
− zr1

3a0

I n := R10[r2_] := 2( z
a0 )

3
2 E− zr2

a0

I n := R30[r2_] := 2( z
3a0 )

3
2 (1 − 2zr2

3a0 + 2z2r22

27a0 )E
− zr2

3a0

I n := J3A[r2_] := ∫ ∞
r2 r1(R10[r1])2dr1

I n := J3A[r2]
Out :=ConditionExpression[( e− 2r2z

a0 z(a0+2r2z)
a02 ), Re[ z

a0 ] > 0]
I n := J2A[r2_] := (

e− 2r2z
a0 z(a0+2r2z)

a02 )

I n := J1A = ∫ ∞
0 r22(R30[r2])2(J2A[r2])dr2

Out := ConditionExpression[ 269z
32768a0 , Re[ z

a0 ] > 0]
I n := J A = ( 269z

32768a0 )

Out := 269z
32768a0

I n := J3B[r2_] := ∫ r2
0 r12(R10[r1])2dr1

I n := J3B[r2]
Out := (1 − exp − 2r2z

a0 (a02+2a0r2z+2r22z2)

a02 )

I n := J2B[r2] := (1 − exp − 2r2z
a0 (a02+2a0r2z+2r22z2)

a02 )

I n := J1B = ∫ ∞
0 r2(R30[r2])2(J2B[r2])dr2

Out := ConditionExpression[ 2991z
32768a0 , Re[ z

a0 ] > 0]
I n := J B = ( 2991z

32768a0 , Re[ z
a0 )

Out := 2991z
32768a0

I n := J = J A + J B
Out := 815z

8192a0

Case 2. Evaluation of the exchange integral (1s3s)

K = 2e2

∞∫

0

r2
2 R10(r2)R30(r2)

⎧⎨
⎩

∞∫

r2

r1 R10(r1)R30(r1)dr1

⎫⎬
⎭ dr2 (45)
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where l ′ = 0, l = 0, n = 3. The calculation is as follows.

I n := R10[r1_] := 2( z
a0 )

3
2 E− zr1

a0

I n := R30[r1_] := 2( z
3a0 )

3
2 (1 − 2zr1

3a0 + 2z2r12

27a0 )E
− zr1

3a0

I n := R10[r2_] := 2( z
a0 )

3
2 E− zr2

a0

I n := R30[r2_] := 2( z
3a0 )

3
2 (1 − 2zr2

3a0 + 2z2r22

27a0 )E
− zr2

3a0

I n := K 3[r2_] := ∫ ∞
r2 r1R10[r1]R30[r1]dr1

I n := K 3[r2]
Out := Conditional Expression

[
exp (− 4r2z

3a0 )z(81a03+108a02r2z−216a0r22z2+32r23z3)

432
√

3a04

]

I n := K 2[r2_] :=
(

exp (− 4r2z
3a0 )z(81a03+108a02r2z−216a0r22z2+32r23z3)

432
√

3a04

)

I n := K 1 = ∫ ∞
0 r22 R10[r2]R30[r2]K 2[r2]dr2 Out

:= Conditional Expression[((189z)/(65536a0))
I n := K = ( 189z

65536a0 )

Out := ( 189z
65536a0 )

4 Conclusion

For the state 1s3s, we obtain the Coulomb integral and exchange integral as follows:

J = e2

⎧⎨
⎩

∞∫

0

r2 R2
30(r2)

⎡
⎣

r2∫

0

r2
1 R2

10(r1)dr1

⎤
⎦ dr2

+
∞∫

0

r2
2 R2

30(r2)

⎡
⎣

∞∫

r2

r1 R2
10(r1)dr1

⎤
⎦ dr2

⎫⎬
⎭ , (46)

K = 2e2

∞∫

0

r2
2 R10(r2)R30(r2)

⎧⎨
⎩

∞∫

r2

r1 R10(r1)R30(r1)dr1

⎫⎬
⎭ dr2. (47)

For the state 1s3p, we get

J = e2

⎧⎨
⎩

∞∫

0

r2 R2
31(r2)

⎡
⎣

r2∫

0

r2
1 R2

10(r1)dr1

⎤
⎦ dr2

+
∞∫

0

r2
2 R2

31(r2)

⎡
⎣

∞∫

r2

r1 R2
10(r1)dr1

⎤
⎦ dr2

⎫⎬
⎭ , (48)

K = 2

3
e2

∞∫

0

r3
2 R10(r2)R31(r2)

⎧⎨
⎩

∞∫

r2

R10(r1)R31(r1)dr1

⎫⎬
⎭ dr2. (49)
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For the state 1s3d, we obtain the Coulomb integral and exchange integral as follows:

J = e2

⎧⎨
⎩

∞∫

0

r2 R2
32(r2)

⎡
⎣

r2∫

0

r2
1 R2

10(r1)dr1

⎤
⎦ dr2

+
∞∫

0

r2
2 R2

32(r2)

⎡
⎣

∞∫

r2

r1 R2
10(r1)dr1

⎤
⎦ dr2

⎫⎬
⎭ , (50)

K = 2

5
e2

∞∫

0

r4
2 R10(r2)R32(r2)

⎧⎨
⎩

∞∫

r2

1

r1
R10(r1)R32(r1)dr1

⎫⎬
⎭ dr2. (51)

For the state 1s4f, we have

J = e2

⎧⎨
⎩

∞∫

0

r2 R2
43(r2)

⎡
⎣

r2∫

0

r2
1 R2

10(r1)dr1

⎤
⎦ dr2

+
∞∫

0

r2
2 R2

43(r2)

⎡
⎣

∞∫

r2

r1 R2
10(r1)dr1

⎤
⎦ dr2

⎫⎬
⎭ , (52)

K = 2

7
e2

∞∫

0

r5
2 R10(r2)R43(r2)

⎧⎨
⎩

∞∫

r2

1

r2
1

R10(r1)R43(r1)dr1

⎫⎬
⎭ dr2. (53)

For the state 1s5g, we obtain the Coulomb integral and exchange integral as follows:

J = e2

⎧⎨
⎩

∞∫

0

r2 R2
54(r2)

⎡
⎣

r2∫

0

r2
1 R2

10(r1)dr1

⎤
⎦ dr2

+
∞∫

0

r2
2 R2

54(r2)

⎡
⎣

∞∫

r2

r1 R2
10(r1)dr1

⎤
⎦ dr2

⎫⎬
⎭ , (54)

K = 2

9
e2

∞∫

0

r6
2 R10(r2)R54(r2)

⎧⎨
⎩

∞∫

r2

1

r3
1

R10(r1)R54(r1)dr1

⎫⎬
⎭ dr2. (55)

For the state 1s6h, we obtain

J = e2

⎧⎨
⎩

∞∫

0

r2 R2
65(r2)

⎡
⎣

r2∫

0

r2
1 R2

10(r1)dr1

⎤
⎦ dr2

+
∞∫

0

r2
2 R2

65(r2)

⎡
⎣

∞∫

r2

r1 R2
10(r1)dr1

⎤
⎦ dr2

⎫⎬
⎭ , (56)
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K = 2

11
e2

∞∫

0

r7
2 R10(r2)R65(r2)

⎧⎨
⎩

∞∫

r2

1

r4
1

R10(r1)R65(r1)dr1

⎫⎬
⎭ dr2. (57)

For the state 1s7i, we obtain the Coulomb integral and exchange integral as follows:

J = e2

⎧⎨
⎩

∞∫

0

r2 R2
76(r2)

⎡
⎣

r2∫

0

r2
1 R2

10(r1)dr1

⎤
⎦ dr2

+
∞∫

0

r2
2 R2

76(r2)

⎡
⎣

∞∫

r2

r1 R2
10(r1)dr1

⎤
⎦ dr2

⎫⎬
⎭ , (58)

K = 2

13
e2

∞∫

0

r8
2 R10(r2)R76(r2)

⎧⎨
⎩

∞∫

r2

1

r5
1

R10(r1)R76(r1)dr1

⎫⎬
⎭ dr2. (59)

For highly-excited states, the calculated energy approach −54.416 eV, in agreement
with the graphical results from the book by Powell and Crasemann [1] (1s3s, 1s3p,
1s3d, 1s4s, 1s4p, 1s4d, 1s4f).
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